CORE GRASS Installation Guide

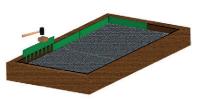
Excavate area for subbase to be installed. *For subbase calculation see overleaf.* Ensure to allow for: 10mm sand bedding layer; depth of grid and the 10-15mm dressing of aggregate when calculating depth from surrounding surfaces.

STEP 4

Install membrane and geogrid if required and then the subbase material. Ensure the subbase is well compacted using either a pedestrian roller or vibrating road plate.

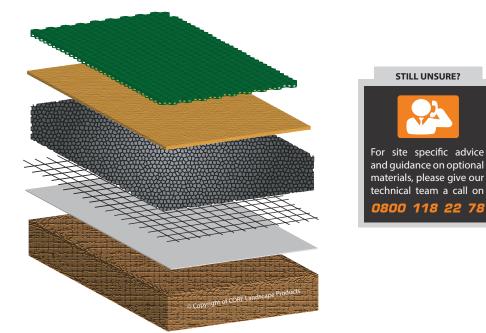
STEP 5

Cover the entire area with a 5-10mm bedding layer of sharp sand / soil mix and compact.


This layer will help to eliminate any minor undulations you may have in your subbase.

Install the grid starting from one corner and working your way out.

Cut to shape using a petrol disc cutter or grinder. Please ensure to wear necessary PPE for the equipment being used.



Install a suitable edging around all open sides. This can be a tanalised wooden edging; block paviours; granite setts; concrete path edgings or our very own flexible metal edging (CORE Edge).

Fill the grids with soil and damp down with water to allow soil to settle into the cells. Seed the area and water thoroughly. To aid grass growth, cover the seed with a top layer of fertilizer and water regularly for a period of 4 to 6 weeks

CORE GRASS grid filled with a soil sand loam mix

Sharp Sand/ Soil bedding layer to level any minor dips or bumps (approx. 10mm)

Suitable subbase material for proposed traffic load (for depth see CBR table)

CGSBXG 20Kn Biaxal GeoGrid (optional)

CGSMT1000 Membrane (optional)

Existing Subgrade

CORE GRASS Installation Guide

Subbase Calculation

Use the table opposite to determine the CBR% value of your subgrade once you have carried out either the tactile, visual or mechanical test.

CBR % VALUE INDICATOR					
CONSISTENCY	IDENTIFYING FACTOR			STRENGTH	
	Tactile (feel)	Visual (observation)	Mechanical (test) SPT	CBR %	CU kn/m²
Very Soft	Hand sample squeezes through fingers	Man standing will sink >75mm	<2	<1	<25
Soft	Easily moulded by finger pressure	Man walking sinks 50-70mm	2-4	Around 1	Around 25
Medium	Moulded by moderate finger pressure	Man walking sinks 25mm	4-8	1-2	25-40
Firm	Moulded by strong finger pressure	Utility truck ruts 10-25mm	8-15	2-4	40-75
Stiff	Cannot be moulded but can be indented (thumb)	Loaded construction vehicle ruts by 25mm	15-30	4-6	75-150

Next, use this table to help you identify your intended traffic load according to vehicle size and frequency.

INTENDED TRAFFIC LOAD							
VEHICLE TYPE \rightarrow	DOMESTIC VEHICLES	CLES COMMERCIAL VEHICLES	HEAVY GOODS VEHICLES				
TRAFFIC FREQUENCY	Feb Feb						
LOW FREQUENCY	LIGHT	MEDIUM	HEAVY				
< 10 per day	TRAFFIC	TRAFFIC	TRAFFIC				
MEDIUM FREQUENCY	MEDIUM	MEDIUM	HEAVY				
10-20 per day	TRAFFIC	TRAFFIC	TRAFFIC				
HIGH FREQUENCY	HEAVY	HEAVY	HEAVY				
> 20 per day	TRAFFIC	TRAFFIC	TRAFFIC				

Lastly, use the CBR% value and traffic type you have identified to calculate the depth of subbase required for your project.

CBR (%) STRENGTH OF EXISTING SUBGRADE	LIGHT TRAFFIC	MEDIUM TRAFFIC	HEAVY TRAFFIC
>6	100 mm	110 mm	120 mm
= 4 < 6	100 mm	125 mm	150 mm
= 2 < 4	135 mm	165 mm	200 mm
= 1 < 2	260 mm	330 mm	400 mm

The table above indicates typical subbase thicknesses required depending on the subgrade CBR value and intended traffic load. Please note this is intended as a general guide in accordance with BS7533.

For further details on permeable paving design please refer to BS7533 Part 13; for installation refer to Part 1. The design for build up should satisfy two parts; firstly to support the intended traffic load and secondly to manage surface water.